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By the d i s c u s s i o n  in Sect ion 2 . 3 ,  we shoul d ass ign

buses to the d eman d s in such a way that all b uses share an

equal portion of the ‘load’ an d t h a t  each  bus is busy  a l l

the time. We should also ensure that the buses are always

suitably dispersed over the area : this will promise good

serv ice to t he future d eman d s that ari se accord ing to the

given probability distribution.

The number n of su b re gions to wh ic h each b us is

assigned is important , particularly in dynamic problems.

• However , this number does not nee d to be too large before

good performance is attained (see Sections 3.1 and 3.2).

When the demand distribution is uniform , t h e  s u b r e g i o n s  can

all s imp ly be of equal area , yet oth erw ise ar bit rary~
2’
~. In

practice , however , physical constraints such as boundaries

of towns , major roads , and  so on , wi l l  i n f l u e n c e  t h i s

choice.

Once the buses have specialized , the demand—type of a

passenger who requests service will trivially determine the

bus , or sequence of buses , to which he is to be assigned .

The central scheduler that receives the demand performs no

• long search , but only informs the relevant bus and provides

the book— keeping .

(lii Simale Tours

Pas se ngers ’ de .ands arise over time. Depending

(2) Add itional remarks will be lade in Seotion 
~~.3. •~•

_ _
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upon the actual requests , tours for t he buses

w i t h i n  their subregions must be determined. Any

point which a bus visits must be ‘feasible ’ — it

m u s t  be an o r ig in  or a d e s t i n a t i o n  of a passenger

who is a l r e a d y  a b o a ra .  (Tn ese  p o i n t s  are of

course within the bus ’s speciality.) The points

are to be visited in some ‘optimal’ order. The

p r o b l e m  is s i m p l i f i e d  by constructing tours in

discrete stages , wnenever a bus enters a new

s u b r e g i o n .  At  t h i s  t i m e  of entry, let the bus

calculate an optimal travelling salesman tour in

the upcoming subregion; any point visited there is

feasi ble at tnis instant of time. The calculation

is to be done on-line .

We have termed tours of this form ‘simple ’. Recall

t hat t he use of th ese tours was just if ied for the stat ic

problems of Chapter Il , and it was claimed that they were

suitable for the dynamic problems too (Chapter III, page M3,

footnote (1)).

If the subregions are small and only a few points are

to be v i s i t ed  in each , it may be easy for a driver to ‘see ’

• what route he should take. Otherwise , he might have a

minicomputer aDoard that finds a tour for him . Efficient

approximation algorithms for the travelling salesman problem

are given in (12 ,3]. In t h i s  way, the calculation of tours

is decentralized — it reduces to a number of small discrete



-71-r
problems. By choosing the numoer of subregions carefully,

it  is poss ib l e  to g u a r a n t e e  t h a t  t he  t o t a l  c om p u t a t i o n  time

is bounded  by a po lynomia l  f u n c t i o n  of q ,  the  a r r i v a l — r a t e

of passengers (see Karp [9)). Note too that the

c o m m u n i c a t i o n  b e t w e e n  the  buses and the  c en t r a l  s chedu le r

does not  need to be c o n t i n u o u s , so r e l a t i v e l y  cheap

c o m m u n i c a t i o n  e q u i p m e n t  s h o u l d  suffice.

(iii) Rules .f.~~ Visitina Subrealons

Two questions remain whenever a bus exits from a

subregion at a time tj: which region should it

enter nex t, and which points should it visit

there? Well , in any region it ente rs , it must

visit all points within its specialization that

were feasible there at time ti. And , it shoul d

visit its r egions success ive ly~
3
~~, in a fixed

order.

These rules were proved valid for the case in which

demands were uniformly distributed , in Section 3.1.

Essentially, they re quire that buses ‘alwa ys do as muc h as

is possible ’. They imply that a bus will not deviate in a

backward direction from its prospective route to service

(3) This should be further qualified. It holds when the
distribution of points is uniform . In the case of more
general distributions , a generalized rule may be required.
For exam ple , visit next the region with largest ‘point
density ’ (i.e. the number of feasible points per unit area)
— ii. Section 4 3 (i)
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newly arr iv ing demand s , as this may delay future passengers.

A f t e r  t j ,  feasible points that arrive in the subregion are

not collecte d: a passenger who just misses the bus must

wait for the next one to enter the subregion. Even though

som e pas sengers are inconvenience d , tneir contribution to

the average performance is kept small.

It may happen that , in a particular subregion , there

are no feasible points. Then , the bus can simply bypass

tnat subregion or travel through it as efficiently as

possible to the next. We can think of the bus as t~ravelling

through its subregions along a fixed route and deviating

within each subregion to collect and deliver passengers

there. Passengers then know the direction in which the bus

is proceeding, and should be happy, knowing roughly where

they are headed.

(iv) Transfer Points

The transfer points (see (i ) a bove ) at whi ch a bus

stops from time—to-time are typically on the

boundary of some subregions. They must be

considered during the calculation of the optimal

travel ling salesman subtours. Our description has

been sufficiently general to allow , for example ,

that some buses have ‘null subregions ’, travelling

only between transfer points; these are the

familiar line—haul buses.
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Transfer points were shown to be necessary in Sections

2.3.2 and 3.3 if the delay incurred can be neglected. For ,

they prov id e vast imp rovements in performance , and this

improvement increases with the number of transfers.

However , too large a number of transfer points is clearly

impractical , an d passen gers might at tach an additi onal cost

to the number of transfers they have to make. Also , the

theoret ical approach of having all buses meet at the same

transfer point may not be aesirable:- the additional trip

from the region to the transfer point will not be negligible

when the number of passengers is small. In this case , the

line—haul bus effectively creates the single transfer in a

practical way .

.L~i. Quotation Times

In the statement of the dial—a—ride problem in

Section 1.1 it was required that , at the time a

passenger requests service , he be quoted a time of

collection and delivery. The scheduling procedure

we have described has not needed such a quotation.

We regard it as a separate secondary problem ,

requiring that an estimate of the ‘load’ on the

system , and hence an estimate of the speed of the

buse s , be made .
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The a pproac h wh ich we have descr ib ed guarantees a

certa in average service to the set of all passengers. Thus ,

if quotations are made to individual passengers , and if

these are then introduced as additional constraints , the

average service to passengers will be reduced. In practice ,

qu otat ions are re quired , but the scheduler nee d not be

committe d to them . We believe that simple constant

estimates of the times of collection and delivery will

usua lly suffice. It is known through which subregions a bus

is to travel:  the t ime spent dev ia ting in eac h su bre gion

coul d be estimated and quotation times could easily be

provided. So , an accura te prediction of travel—time between

points is avoided.

The elemen ts (i)— (v) above outline , in somewhat general

terms , a class of scheduling algorithms. The basic approach

is described by (i) and (ii) and we have claimed that this

approach is justified in an asymptotic probabilistic sense.

The detailed operational design is described by (iii) for a

J 

special case , and in the next section it will be seen that

this can be extended fairly generally. What is lack ing ,

then , is a methodology for selecting a suitable ~•
decomposition and for organizing the manner in which the

buses specialize .

j • For the special—case idealized models of Chapters II

and III no such methodology is required since the s o l u t i o n  • •

is relatively easy: when the demands are uniformly
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distributed over the region , partition it into subregions of

equal area. Then , in the manner of Algorithm 6.2 the buses

specialize in disjoint subregions and have cyclic tours

through them when the arrival—rate of passengers is large.

In general , however , the answer is not as easy and

difficulties , besides the nonuniformity of distributions ,

abound in practice. Indeed , let us remark upon a few

pract ical cons id erat ions which indi ca te that a general

me thodology for the aetermination of subregions and

bus— routes would surely be very complex.

First , what criteria actually determine good service?

The criteria assumed in Chapters II and III , viz, the

distance travelled by the buses and the average flow—time of

passengers are not all-important , but are only first

approximations to real requirements. Tnere are , for

exampl e , the  variance of passengers ’ travel—times

(mea suring , in a sense , the ‘rairness ’ to the passengers)

and the maximum of all passengers ’ travel —ti mes (since we

wish to provide all demand —t ypes with good service ) . Or ,

there are questions of the reliability of the system (what

happens if a bus breaks down?) and its stability (what

effect will additional delays and uncertain travel—time

have? ) .

Fur th erm ore , a new dial—a—ride system would have to

suit the existing circumstances. Boundaries of towns ,

rivers or roads may impose physical constraints on the way



-76-

in which the region can be subdivided. We may wish to

supply a special quality of service to certain demand—types

(e.g. to disabled persons , or see Example 4.4). A

dial— a—ride system must be compatab].e with existing public

trans portation systems: it should supplement them , an d yet

could also depend upon them . For example , ex isting bus— or

subway—routes might reduce the number of line—haul buses

that are needed if the subregions are designed to take

advantage of them .

Thus , dial— a— ride schemes must be tailor—made to suit

inaividual complex requirements. Even though a general

methodology has not been proposed , our study has yielded

many qualitative insights , and no doubt additional

principles could be obtained with further research.

On the other more favourable hand , however , we wish to

suggest that our a pp roach does yield a pract ical des ign

tool. The emphasis throughout Chapters II and III was upon

the com par ison of algor it hmic performance (see Def inition

(2.1)). In general , it is possible to quantify the

performance of a suggested scheme whenever a distribution of

demands , a decomposition of the region into subregions and

an organization of specialist buses , are given . For , one

can estimate the time spent by each bus in each of its

subregions (using Beardwood ’s formula , Theorem 1) and

evaluate its dynamic Dehaviour as it travels around its

I
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subregions and visits its transfer points~~~~. The service

supplied to the various demand—types by the suggested scheme

can then be evaluated with respect to average flow—time and

to many other performance criteria. Thus , a su gges ted

scheme can be quantitatively studied. Usually, close d—form

analytic formulas should be obtainable to express its

cnaracteristics. Then , investigations can be made to

analyse the behaviour of the scheme when the paramet ers —

e.g. the number of buses , the demand distribution , the

number of transfer points , and so on — are varied. Finally,

• alternative schemes , wi th alternative regional decomposition

and bus—specialization can be evaluated and compared. These

are analytic studi es , and avoid the need for complex

simulations. An example that briefly illustrates such a

quantitative investigation is given in Section 4.4.

It is in order , finally, to make some additi onal

remarks on the design approach which we have expounded in

this section.

The approach can be applied on a broader scale. The

‘city ’ may itself be a module , connecte d to others within a

larger system . Also , the method is relevant to

‘one—to—many ’ systems , (21], where passengers have a common

origin and wish to be taken to various destinations . For ,

it is eas y to assign incomin g passen gers to buses

(4) This was illustrated for the simple models in Chapter
III.

.•J _ 
• ~~•_ _ _ _ _ _ _ _ _
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simultaneously, merely treating the single origin as a

transfer point. ‘Many—to—one ’ systems are similar.

In [21], the existence of ‘a dvance  re ques t s ’, where

passengers request service some tine in advance , is regarded

as important. With our approach these demands are easy to

handle. If the ‘period’ of a bus is P — this is the tine

it takes for the bus to make a circuit of all its subregions

— the passenger can be promised collection during

[t 1, t1+P) for any suitable time t 1. Then , when the

region is entered , the passenger will be collected if this

can be during (t1, t 1+P], otherwise the collection is

deferred . Delivery by a certain time can similarl y be

guaranteed in advance.

There is a further important implication of the

decom position described in (i) above. The success of a

transportation system depends ultimately upon the

co—o peration of the bus—drivers , particularly if they have

t decision—making capabilities. Since each bus has certain

fixed demand—types assigned to it , it is poss ib le to measu re

the efficiency of individua l drivers. If each driver

travels as well as possible through his subregions , the

total system performance will be maximized . So , some

incentive might be given to the drivers that will encourage

them to perform well and , for example , to reduce the number

of unnecessary stops. Furthermore , since the drivers

communicate with the central scheduler only intermittently,
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the ‘big—brother ’ paranoia of continuously—watched drivers

is reduced.

L.~ Quantitative A.~nects .gj Desian

In Section 4.2 It was described how suggested schemes

can be investigated by quantifying their behaviour.

I n v est i g a t i o n s  such as t h e s e  are  l i m i t e d  by the  many

theoretical assumptions of Chapters II and III , since

inaccu racies are then produced In the resulting

measurements. In this section we discuss some of the more

important of tnese assumptions and investigate to what

extent they can be relaxed. We indicate how the

inaccuracies might be reduced by making adjustments in the

applied formulas.

_____ .I ~~ Demand Distribution

In deriving formulas measuring , for example , the

average flow—time for a suggested scheme (see Theorems 5 and

6) Theorem 1 is used to obtain the time spent by a bus in

each of its subregions. For this , it must be assumed that

the points which are visited in each subregion are drawn

froa a uniform probability distribution there: this was the

case in our previous analyses since the demand pairs were

• • ‘rand om ’.

_  

H
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Suppose , now , tnat the points to be visited in a

subregior~ are not uniformly distributed , but arise according

to a probability density function , p, say. Then it has

been shown in [2] that the optimal tour—length Ln

satisfies

lim ~fl = b f p ~
”2dv a.e.

H

When p 1/a , we have the uniform distribution. Since

I p~~
’2dv .~~. 

I~ , nonuniformity of the distribution decreases

L~ . Consequently, the additional structure in the

nonuniform distribution can be used to advantage.

The expression above might be used to improve the

analyses when the distribution is nonuniform , and when all

origins and destinations are independent of one another.

The discretization imposed by simple tours will remain

useful , however. For , if the whole region is divided into

m subregions and if we approximate the distribution p to

be uniform within each subregton , then by making m large ,

the approximation can be made arbitrarily negligible.

Now , consider a bus visiting its subregions. What rule

( i . e .  element (iii)) should it use? It is not hard to see

tnat in order to minimize average flow—time the bus should

a lways ‘d o as much as possible ’ (compare with Lemma 5.1).

Tlw•. macsever  i t  enters a subregion it should always visit.. •.c~ point, as possible there. But , which subregion

~~~~~ i t  v i s i t ?  It , in each of its subregions

• , s. . II .,. a r e nj feas ible  points to be visited

IT.
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and if t hen T i (ni ) will be the time spent in each , choose

i so as to minimize T~~(nj)/nj. Even when the

arr ival—rate q of demands is large , it may be tne case

that the bus does not visit its subregions successively. In

gene ra l , the analytic calculation of average flow—times will

be more difficult than before , but will still be feasible.

Note that these remarks are not true if the origin and

destination in a demand pair are correlated.

Finally, it is in order to comment upon the stochastic

process by which demands arrive over time. We assumed a

constant arr ival—rate q, and th e analys is coul d be

extended for a Poisson process with mean q. In practice ,

q will change over time . This change will be relatively

slow — at certain times of the day alternative designs for

the decomposition and specialization might be selected , so

as to suit the changing operating conditions. It is

believed that a few discrete such changes should suffice in

practice.

4.~~ 2 ~~g Met ric

We have taken as the distance between any two points in

the city their euclidean separation — i.e. the length of

the straight line joining them . In reality, the distance

travelled by a bus is not as s imple .  If the actual dista nce

can be approximated by a constant multiple of the euolid.an

distance , the analysis of Chapters II and III remain s valid



(1) The measure of performance is distance travelled or
average f low—time .  The schemes have thus been found to be

• robus t , minimizing cri teria relevant both to the operator of
• 

~ 
the system and to the passengers.  We shall discuss these ,

:1 and other measures of performance , sub sequently.
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with very minor modifications.

Alternatively, the distance between two points x , y

may be better approximated by a multiple of the ‘Man hattan

metric ’, or L~ , given by

distat.oe(x ,y) = Ix 1— y 1~ + x~—y~i.

Again the results hold , this time with a different value of

the constant b [2].

More general metrics that take into consideration

indirect or faster roads , promise to be an order of

magnitude more difficult: for , there is then no result

• corresponding to Theorem 1.

4 .3 . .~ Azymntotic

Possibly the most glaring inadequacy of the approach is

that it is asymptotic in the number of passengers. The

expressions which are obtained are laws of large numbers ,

• and require that the number of passengers and their

arrival—rate q be large. To apply the formulas we would

ideally seek a ‘central limit’ result allowing us to

estimate the probable magnitude of the errors when q is

small , and to determine the size of q needed for reliable

estimates.

Sadly, a general result of this nature is not

avai lable .  A theoretical analysis is hard and results

depend , for example , upon the shape of the region. For P

p

~ 
k~~;
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a square , the best that it has oeen possible to do

analyt ically on the convergence of Theorem 1 , is to show

that~~~
E[L n] b./i + O (logn/n)

-

where E[L~ ) is the expected length of an opt imal t r a v e l ling

salesman tour for a ran d om instance of the problem of size

n. It m ight be hoped that the actual rate of convergence

is faster than this.

In this spirit , let us invest igate em pirically the

conve rgence of Theorem 1. We shall consider only points

which are distributed randomly in a unit square , and shall

seek to est im ate E[L~~] as a function of n. Comparing

E[L~~1 with b./’~ will yield an expected error in the

prediction. This error will enable us to bound , in a sense ,

• the error due to the asymptotic approximation in dynamic

versions of the problem as well.

The value of EtL~ ] was estimated for n=20 ,30,... as

follows . Random travelling salesman problems were generated

by scattering n points on the unit square (x and y

coordinates were generated uniformly and independently). A

number of instances of each problem size a were solved~
6
~ .

(5) This can be derived in the manner of Beardwood ’s Lemma
6.

(6) It should be remarked that a s imilar  experiment was
performed by Christofides and Eilon 14j ; howev er , details of
their numerical results and the algorithms used were not
provided .
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is decentralized — it reduces to a number of small discrete
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The algorithm used was a heuristic of Lin and icernighan

(12]: it uses modest computation time and has been found to

‘practically guarantee optimality ’. For n large the

computation time was still high , however , an d f ewer  pro blems

were sampled. The results obtained are tabulated in Figure

11. 1. From these , we est imate  th e va lue  of b to be abou t

.765; Figure 4.2 compares the empirical expected

tour— len gth with the value of .765.J~. In Figure 4.3 we

p lot E [L n]/J~ versus n, indicating how it converges to

.765. The curve .7b5 + 4/n is given for comparison : it

seems clear that E (Ln]/./~ converges at a faster rate than

0(1/n).

It is interesting to note that for every random

problem—instance tried , with b = .765,

bJ~ .~~ 
L~ .

So , with high probability the tour—length predicted by

Theorem 1 is less than the actual value. Indeed , from

Figure 4.3,

b/~ .j E(Ln] .j b./~ + 4/n (4.1)

This yields a rairly close bound on the magnitude of the

error implicit in Theorem 1.

Now let us obtain an estimate of the convergence rate

for a bus problem — we are interested primarily in the

dynamic vers ion. In evaluating the perform ance of a scheme •

the time spent by a bus in each of its subregions is

estimated , so we can utilize the results above. We consider

~~~~~ A~-•
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• de nsity ’ (i.e. the number of feasible points per unit area )

— see Section 4 3 (1)
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only a very simple problem : a single bus is serving a

region of unit area and visits a subregions successively.

Each subregion is a square with area 1/a , and the sys tem

is in steady— state.

Let q be the arrival—rate of demands , and let E[P q]

be the expected period — i.e. the tine for the bus to visit

all a subregions. In Equation (3.4) we predicted that

EIP~~) woul d behave asymptotically as 2b2q. We now ask

the follow ing simplified question: can we bound the

relative error in this prediction by a function of q. That

is , seek a bound to

error E(P 0] — 2b2q (4.2)

2 b2 q

Let us ma ke another simplifying assumption. Suppose

that , as the bus travels through its subregions , it visits

the same number of points , n , in each~
7
~~. Then , the

expected time spent in each subregion is E[L~~]./17i, and

the expecte d period is E(P~~] = mE(L n]./T7~ . Dur ing a

period , mn points are visited ,

i.e. q z ___________ (4 .3 )

2E[L53/171

(7) This assumption drastically simplifies the analysis.
The number of points to be visited in each subregion is
really random and we get

Expected time in a subregion ~ pq (n)E(L n)117 3
n~0

where pq (n) is the probability that there are n points
in the subregion when the arrival—rate is q. (Note that •
th ere is a correla ti on b etween the number of points n • . . •~

visited in successive subregions: there will be sequences
of large a and sequences of low n.)
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From (4.2),

error = — b2n/E[L.~)

b2n/ELL~ ]

Using (4 .1) ,

er ror  •�. (b,/i + ‘4 / n ) 2 
— b2n

b2n

= 8bJ~ + lb/n
b2n2

With b z .765, the relative error given by (4.2) is less

than 12% when n , the number of points visited in each

subregion , is 20; it is less than 7% wnen n is 30;

and it is less than 5% when n is 35. For any  a ,

(4.3) determines the corresponding arrival—rate , q.

4.~~.4 Additional Uncertainties

The following are a few additional issues (mainly

J 

related to stochastic variations) that we have neglected and

that we now wish to note.

(1) The speed of a bus is not constant as has been

assu med. The travel—time between two points is uncertain

and is subject to traffic and road conditions.

• (ii) Delay, that occur when a stop is made have been

neglected. £ bus may have to wait for a passenger to appear

and for his impedimenta to be loaded. Similar delays occur

for alighting passengers.

(iii) A bus is also deta ined at transfer points. The time
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taken is not instantaneous , but is a function of the number

of passengers who transfer. Indeed , if buses are to meet at

transfer points as was required in Chapters II and III,

waits are inevitable.

liv) From a passenger ’s viewpoint , the time spent on a

line—haul bus (including his wait) may be appreciable. In

our asymptotic analysis these , as wel l as the time ta ken for

a bus to travel a fixed bounded distance were neglected .

(v) Consiuer a bus travelling a circuit around its

subregions. In Chapter III we calculated the equilibrium

value of the average flow—time . If, now , the bus is

delayed , additional passengers still arrive , and the time

spent in the following subregions will be longer than

anticipated So, the delay will persist and the equilibrium

will only be re—achieved gradually.

Because of these assum ptions , t here will be yet f u r t her

errors in the derived formulas. However , it is believed

that many of them could be taken into account in a practical

analysis. For example , studies of urban traffic behaviour

• might be used to more fully understand the travel—times; and

we might be able to estimate the time spent by passengers on

• 
• the line—haul system . Then , the tools which we have

propo sed could be further sharpened and calibrated.
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Finally, a more sophisticated technique for the

detailed operational control — one that will take into

considerat ion the random fluctuations — can be suggested.

Consider specifying in advance a schedule of tines for the

buses to be at transfer points. Then , if a bus is running

late , it can improve its speed by selecting carefully which

of its passengers it should collect: some passengers remain

uncollected until the bus (or the next suitable bus)

• re— enters their subregion. This feature would require

additional machinery if it is to be analysed . A measure of

the ‘state ’ of each bus would have to be cefined , and it

would be nontrivial to determine the schedule in advance —

certain ‘slac k ’ would be required to allow for random

• disturbances . The schedule would have to be ‘stable ’ with

• respect to reasonable perturbations and ‘flexible ’, so that

changes can easily be made if things go awry. To study

J 

these topics would require new methods of some ‘stochastic

scheduling theory ’.

j,~ ~ Examnle

Let us suppose that we have a city, H , in which we

want to cons truct a dial— s— ride transportation system. This

city is essentially composed of two distinct regions as

shown in Figure 4.4 — downtown , Rd, with area ad, and

su bur bs , B1, with total a r ea a a .  There is already an

efficient public transportation system operating in 
~~~ •.~
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Figure 4.4 An example : the city

For most  of the day there is heavy t r a f f ic trave l ling

between H5 and Rd in both directions. The dial— a— ride

scheme is to be designed for this scenario.

Suppose we can approximate the distribution of demands

• that a x e to be served by our system by the following. Any

particular demand pair (o,d )  is of the form (R,,Rd) with

probability p/2 , pe (0,1); it i~ of the form (Rd,Rs) with

probability p/2; and it is of the form (R ,,R5) with

probability (1—p ). This distribution , then , i~ nonuniform .

The system is not required to serve demands (R d,Rd ).

Fur ther , the value of p is large , i.e. fairly close to

unity.

As remarked , the approach which we wish to adopt is one

in which B is decomposed into subregions and in which

buses special ize.  The theory of Chapters II and III has not

~~



j  
‘random ’ .
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given a general meth000logical procedure for designing this

decomposition when demands are nonuniform , but the following

could well be reasonable for the present example.

In order to discourage persons who travel between H5

an d R d from using tneir private venicles , let us provide

them with attractive transportation , say a transfer—free

service. We describe first a scheme for only these

(R s, R d) and (Rd,R5) demands. Consider a division of

H3 into k regions , r l,...rk, each of area a5/k , for

an integer k. It might be desirable to have natura l

divisions here , described by boundaries of suburbs , roads

an d so on. This is depicted in Figure 4.5.

Figure 4.5 Portition of suburbs, R,

Now allocate a bus b j  to the  region r i ,  for

iz i , .  . . k ;  bus bj will serve passengers with origin or

destination in rj and will travel also in R d . Each bus

L


